

Succinct Data Structures

Part One

Motivation

- Some data sets are downright gigantic.
 - The human genome uses 3 billion base pairs.
 - Google gets billions of search queries a day.
 - Census data for some countries runs to billions of entries.
- Simply loading the data sets into memory - let alone storing them in fancy data structures - pushes up on system limits.
- ***Goal:*** Store our data using as few bits as possible while still being able to answer interesting questions about that data.

Outline for Today

- ***The Binary Rank Problem***
 - Prefix sums on bitvectors.
- ***Solving Binary Rank***
 - And learning about how to save bits along the way.
- ***Jacobson's Succinct Rank Structure***
 - A surprisingly space-efficient data structure for binary ranking.

Binary Ranking

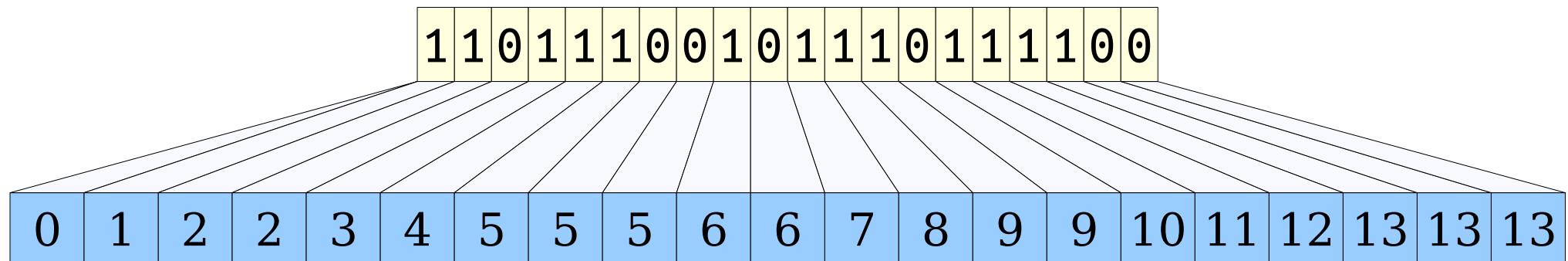
Binary Ranking

- The ***binary ranking problem*** is the following:
Given a list of n bits and an index i, return the sum of all the bits up to position i in the list.
- It's basically the problem of computing prefix sums in bitvectors.

1	1	0	1	1	1	0	0	1	0	1	1	1	0	1	1	1	1	0	0
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

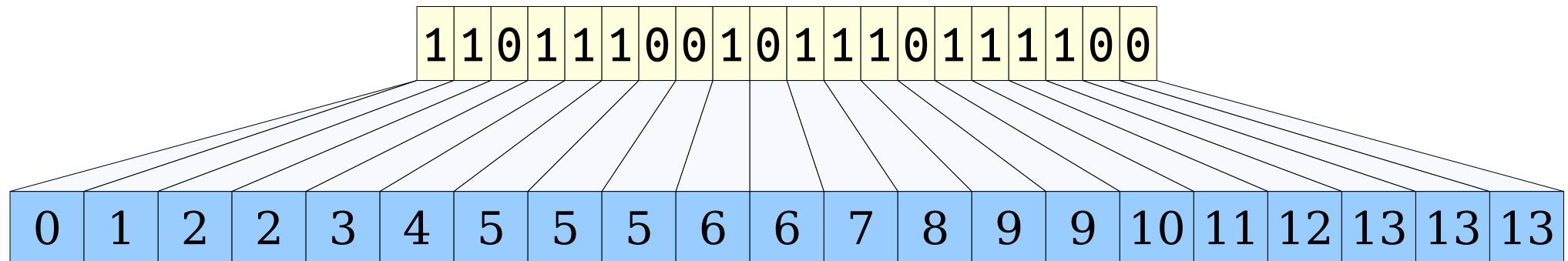
Binary Ranking

- Let's imagine we want to be able to answer rank queries in time $O(1)$.
- We could do this by writing down the prefix sums for all positions in an array, then just looking up the answer in a table.
- **Question:** How much space does this use?



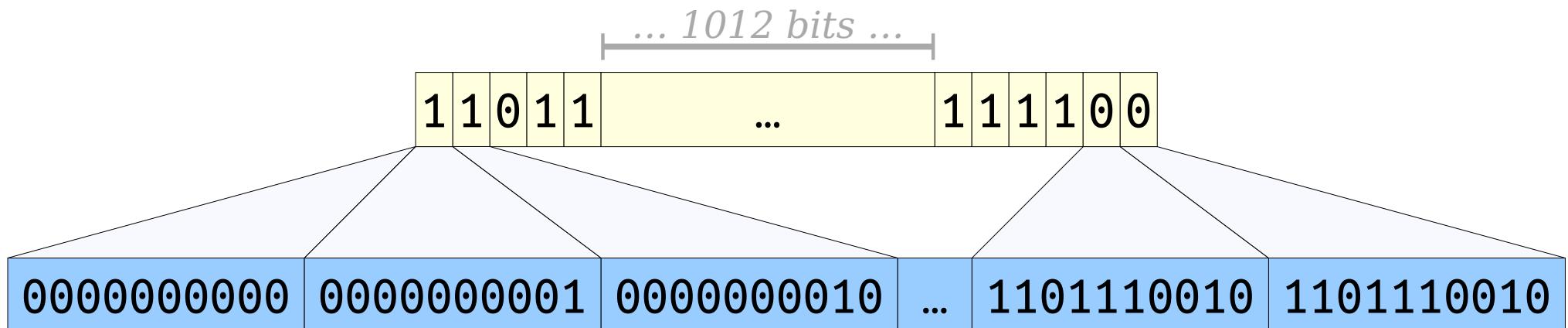
Binary Ranking

- It sure looks like this uses $\Theta(n)$ space.
- But what do we mean by “space” here?
 - Integers usually are represented by machine words.
 - We assume each machine word has w bits in it (e.g. $w = 32$, $w = 64$, etc.), for a constant w known to us.
- Space: $\Theta(nw)$ bits. This leaves a lot to be desired.
 - On a 64-bit machine, this is a 64x blowup in memory!
- Can we do better?



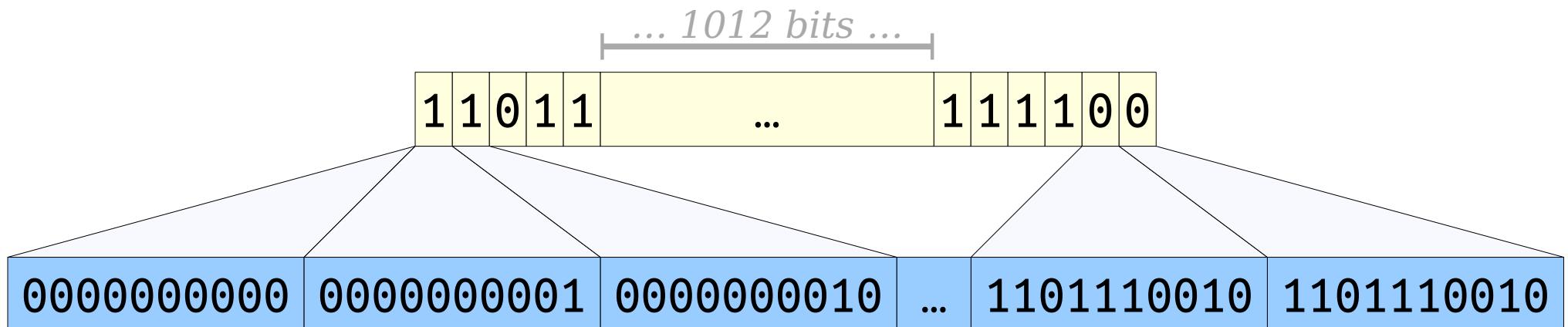
Counting Bits

- Let's suppose we have an array of $1023 = 2^{10} - 1$ bits.
- The prefix sum at each point would be an integer between 0 and 1023, inclusive.
- We only need 10 bits to represent such a prefix sum.
- ***Idea:*** Allocate an array of $10n$ bits, interpreted as an array of n 10-bit numbers.
- This reduces our space usage down to $10n$. It's better than before, but still $10\times$ bigger than the original array.



Counting Bits

- If we maintain an array of prefix sums for an array of n bits, each individual prefix sum is a value between 0 and n , inclusive.
- There are $n+1$ possibilities for what those numbers can be, so each integer requires $\lg(n+1)$ bits.
 - We could use fewer bits by using shorter integers for earlier values, but that won't necessarily asymptotically improve space usage.
- Our solution therefore uses $O(n \log n)$ bits, but allows for rank queries in time $O(1)$.
- Can we do better?



Counting Bits

- We'll say that a solution to binary ranking is a $\langle s(n), q(n) \rangle$ solution if
 - its space usage is $s(n)$, and
 - queries take time $q(n)$.
- We currently have a $\langle O(n \log n), O(1) \rangle$ solution to binary ranking.
- **Question:** Can we do better?

	Bits Needed	Query Time
Prefix Sum Array	$O(n \log n)$	$O(1)$

Counting Bits

- We are currently using $O(n \log n)$ bits of storage space: $O(n)$ numbers, each of which is $O(\log n)$ bits long.
- To improve on this, we could either
 - reduce how many numbers we're storing, or
 - reduce how many bits each number uses.
- **Question:** What might that look like?

	Bits Needed	Query Time
Prefix Sum Array	$O(n \log n)$	$O(1)$

Improving Space Usage

- Split the input array of bits into blocks of b bits each. Then, only store prefix sums at the start of each block.
- To compute the prefix sum at index k :
 - Compute $i = \lfloor k/b \rfloor$, the index of the block containing k .
 - Write down the precomputed prefix sum for block i .
 - Run a linear scan to compute the sum of the first $k \bmod b$ bits of block i .
 - Add these numbers together.

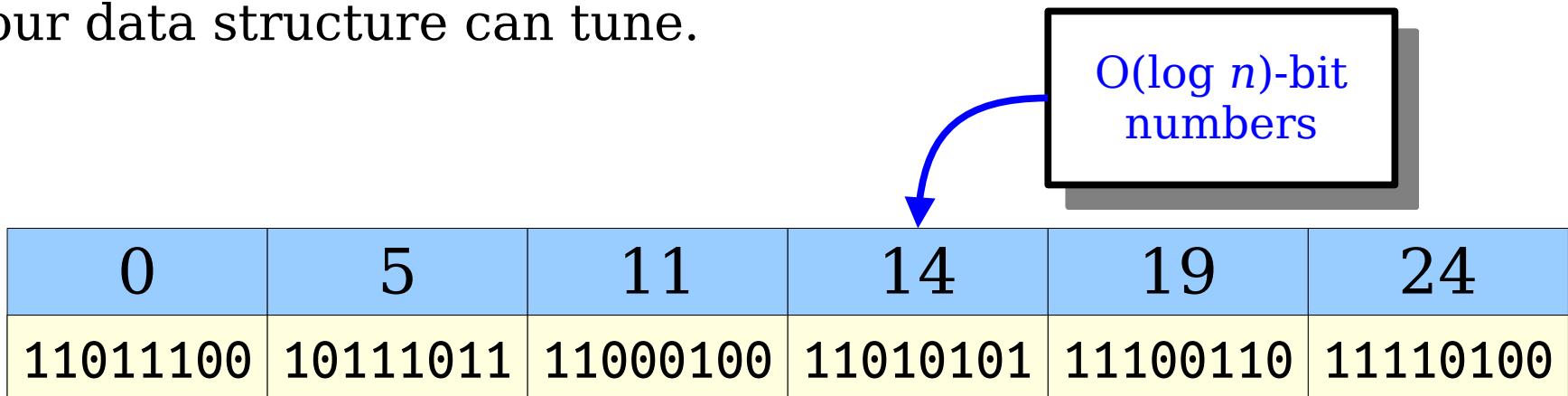
$$\text{rank}(36) = 22$$

(block 4)

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

Improving Space Usage

- Total space usage: **$O((n \log n) / b)$** .
 - We're storing $\Theta(n / b)$ numbers.
 - Each number needs $O(\log n)$ bits.
- Query time: **$O(b)$** .
 - We may have to scan $\Theta(b)$ bits.
- There is no “optimal” choice of b here.
 - Increasing b **decreases memory usage** but **increases query time**.
 - Decreasing b **decreases query time** but **increases memory usage**.
- We'll therefore leave b as a free parameter that whoever is using our data structure can tune.



A diagram illustrating the space usage of a data structure. At the top right, a callout box with a black border and a gray shadow contains the text "O(log n)-bit numbers" in blue. A blue curved arrow points from this box down to the fourth column of a table. The table has two rows. The top row contains the numbers 0, 5, 11, 14, 19, and 24. The bottom row contains their binary representations: 11011100, 10111011, 11000100, 11010101, 11100110, and 11110100. The columns are separated by vertical lines, and the rows are separated by horizontal lines.

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

The Story So Far

- Earlier, we said there were two strategies we could use to reduce space:
 - Store fewer numbers.
 - Use fewer bits per number.
- Our blocking approach hits this first point.
What about the second?

	Bits Needed	Query Time
Prefix Sum Array	$O(n \log n)$	$O(1)$
Partial Prefix Sum Array	$O\left(\frac{n \log n}{b}\right)$	$O(b)$

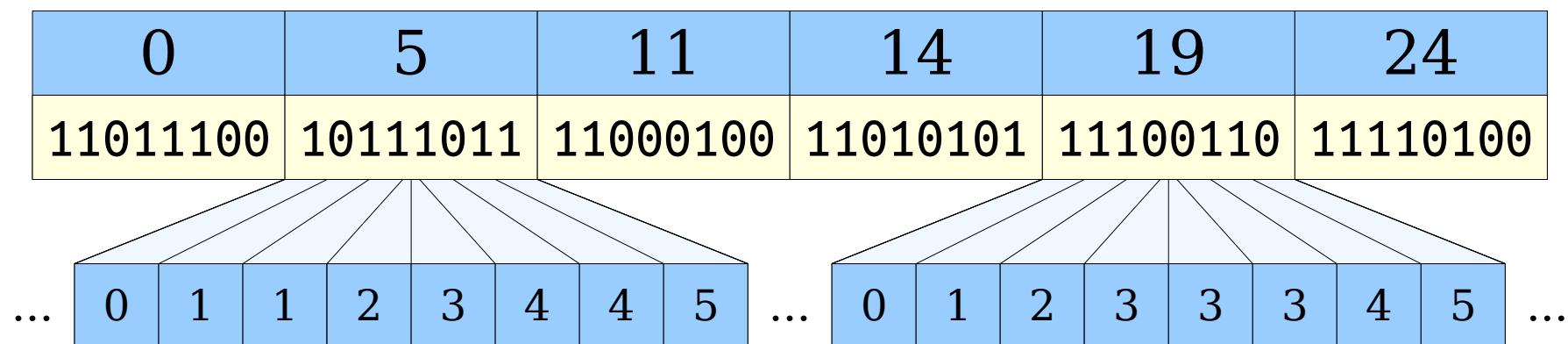
Combining Things Together

- The “slow” step in our query is the linear scan across the bits of a block. Can we speed things up?
- That linear scan is essentially a rank query on an array of b bits.
- **Idea:** Rather than use a linear scan there, use our existing $\langle \Theta(n \log n), O(1) \rangle$ solution at a per-block level.

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

Combining Things Together

- Instead of one single top-level array, maintain two parallel arrays.
 - The top-level array stores the bit sum up until the start of each block.
 - The second-level array can be thought of as an “array of arrays,” with one array per block, holding answers to rank queries purely within the block.
- There isn’t room in the slides to draw out the full second array; hopefully you can infer from the picture what the remaining entries would be.

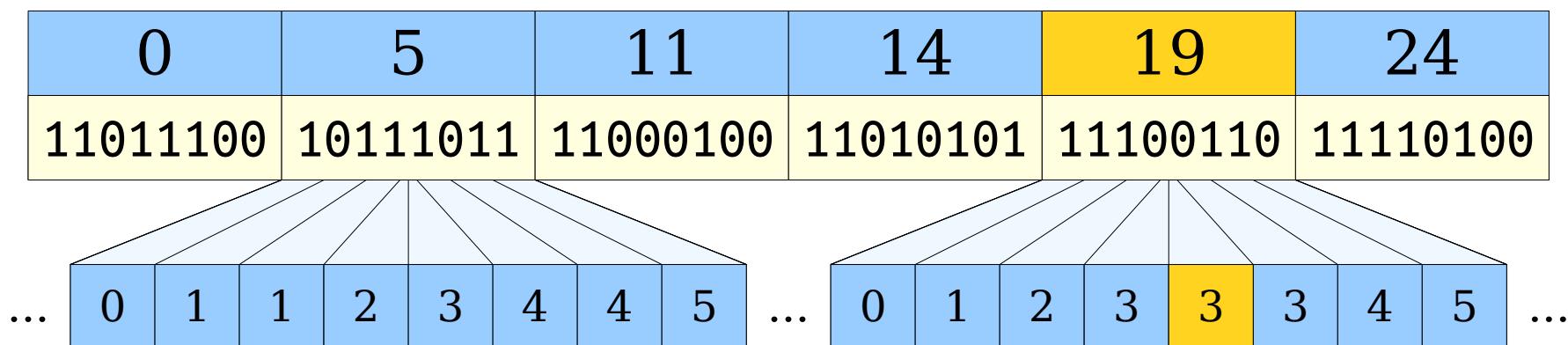


Combining Things Together

- To answer a rank query at index k :
 - Compute $i = \lfloor k/b \rfloor$, the index of the block where the query ends.
 - Look up the i th entry of the top-level table.
 - Look up the $(k \bmod b)$ th entry of the second-level table's section for block i .
 - Return the sum of those numbers.
- Query cost: **O(1)**.

$$\text{rank}(36) = 22$$

(block 4)

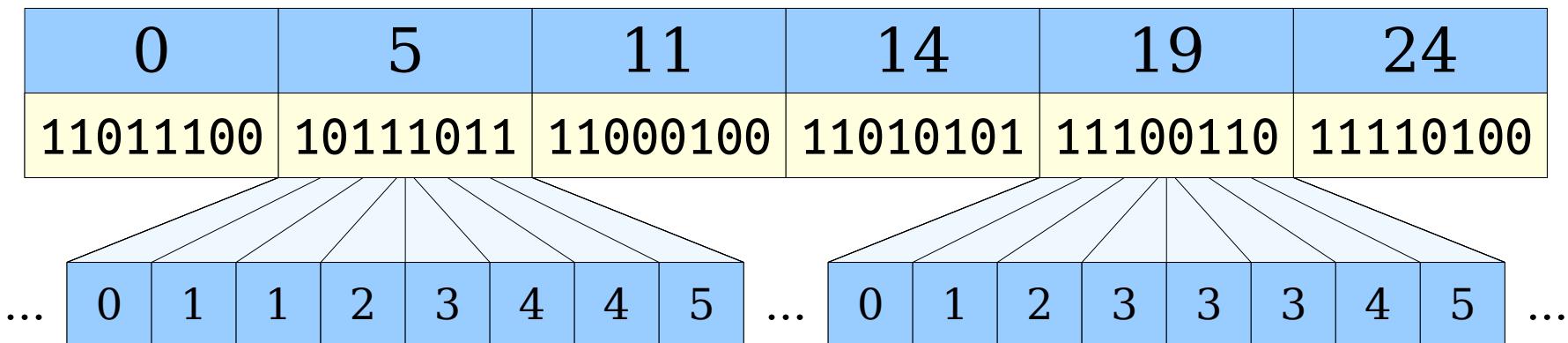


Combining Things Together

- How much memory does this use?

Answer at

<https://cs166.stanford.edu/pollev>



Intuiting $O\left(\frac{n \log n}{b} + n \log b\right)$

- As b increases:
 - We use less space ***storing partial prefix sums*** at the start of each block, since there are fewer blocks.
 - Each block has more bits, so the ***sums within each block*** require more bits.
- As b decreases:
 - We use more space ***storing partial prefix sums*** at the start of each block, since there are more blocks.
 - Each block has fewer bits, so the ***sums within each block*** requires fewer bits.
- ***Question:*** What choice of b minimizes the above quantity?

Optimizing $O\left(\frac{n \log n}{b} + n \log b\right)$

- Start by taking the derivative:

$$\frac{d}{db} \left(\frac{n \log n}{b} + n \log b \right) = \frac{-n \log n}{b^2} + \frac{n}{b}$$

- Setting equal to zero and solving:

$$\frac{-n \log n}{b^2} + \frac{n}{b} = 0$$

$$-\log n + b = 0$$

$$b = \log n$$

- Asymptotically optimal choice is $\mathbf{b = \Theta(\log n)}$, giving space usage $\mathbf{O(n \log \log n)}$.

The Story So Far

- Our new approach is more space-efficient than our original approach, and works nicely in practice.
 - $\lg \lg 2^{64} = 6$.
- **Question:** Can we do better?

	Bits Needed	Query Time
Prefix Sum Array	$O(n \log n)$	$O(1)$
Partial Prefix Sum Array	$O\left(\frac{n \log n}{b}\right)$	$O(b)$
Two-Level Prefix Sums	$O(n \log \log n)$	$O(1)$

Feedback Loops

- Think back to how we arrived at our $\Theta(n \log \log n)$ -space solution.
 - We split our array apart into blocks of size b .
 - We stored the prefix sums at the start of each block.
 - We used our $\Theta(n \log n)$ -space solution for each block.
- More generally, for that last step, we could have used *any* rank structure we wanted.

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

Block-Level Rank

Feedback Loops

- Last time, we used our $\langle O(n \log n), O(1) \rangle$ structure per block. It was the best approach we had available.
- But we now have a $\langle O(n \log \log n), O(1) \rangle$ structure available, which uses asymptotically fewer bits!
- What happens if we use that one within each block?

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

$O(b \lg \lg b)$
Space

Feedback Loops

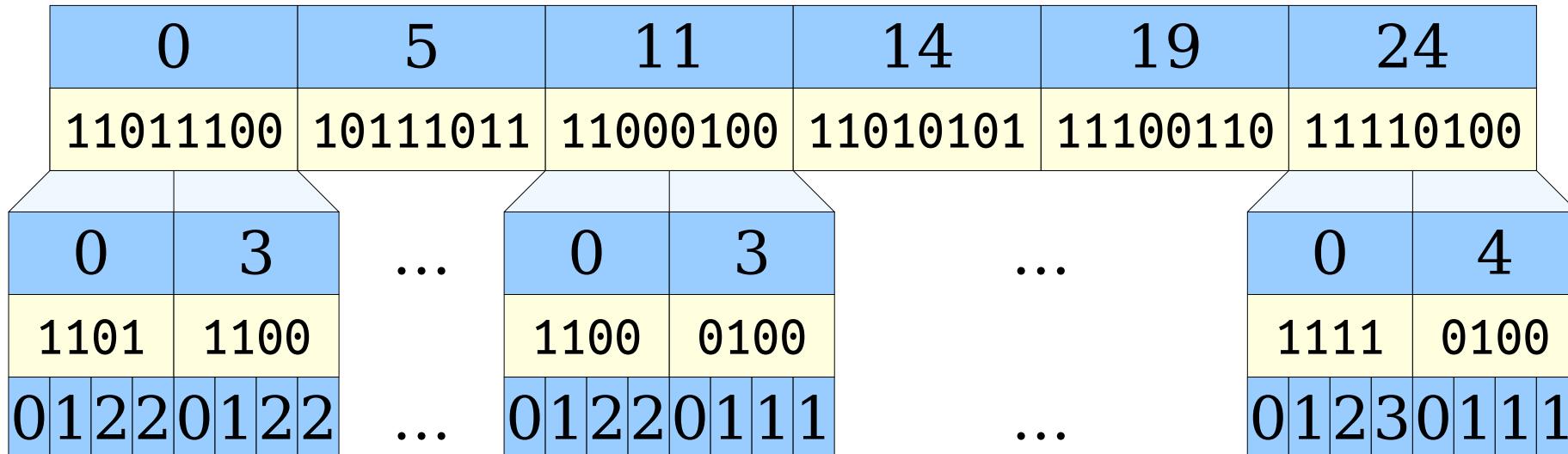
- Split the input apart into blocks of size b .
- Store the prefix sum at the start of each block.
- Use our $\langle O(n \log \log n), O(1) \rangle$ solution within each block.
- Compute the overall rank of an index k by combining these answers together.

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

$O(b \lg \lg b)$
Space

Feedback Loops

- The actual data structure consists of three arrays:
 - A top-level array of prefix sums before each b -bit block.
 - A second-level array of prefix sums before each $(\log b)$ -bit “miniblock.”
 - A third-level array with prefix sums before each bit of each “miniblock.”
- We group these tables into three arrays, one per level, to avoid storing pointers.

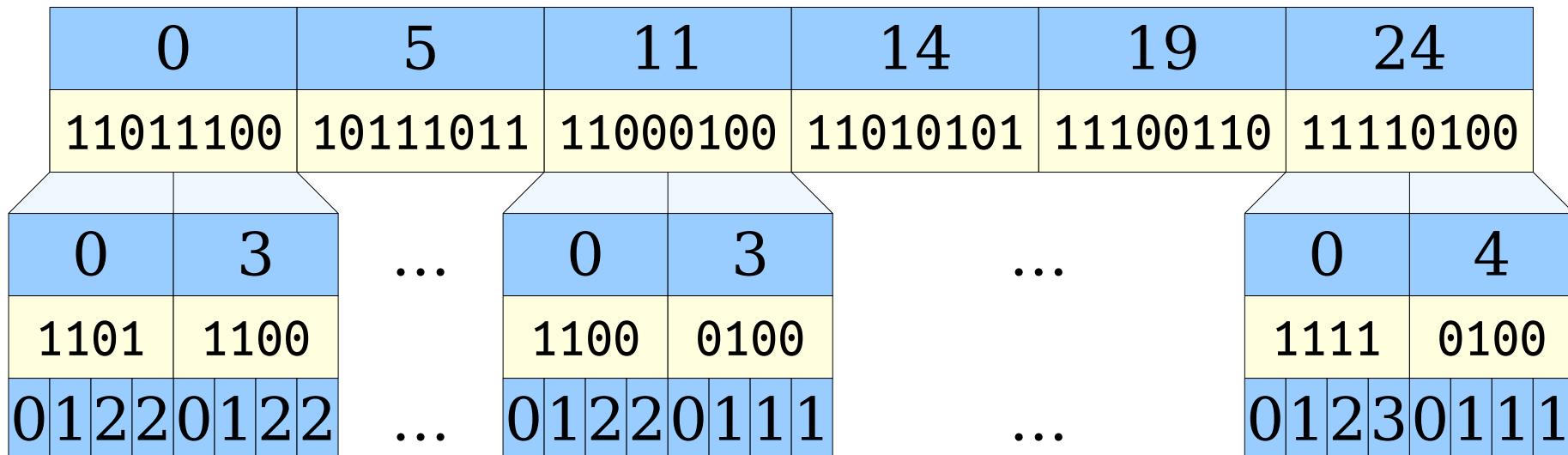


Feedback Loops

- How much memory does this structure use, and what's the query cost?

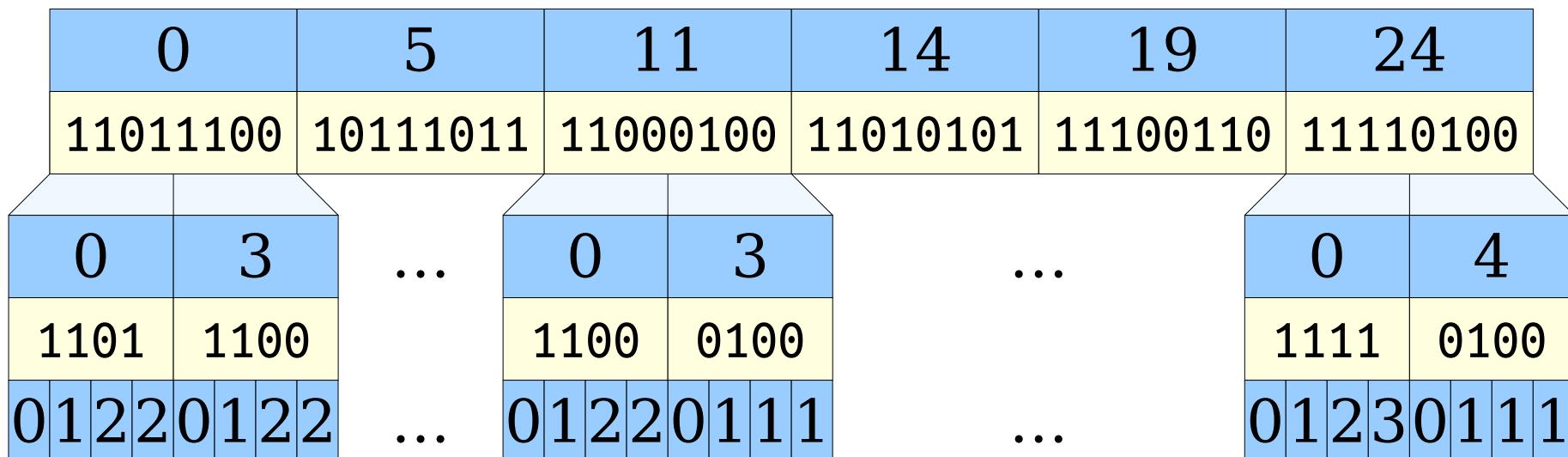
Answer at

<https://cs166.stanford.edu/pollev>



Feedback Loops

- **Claim:** The choice of b that asymptotically minimizes $\Theta((n \log n) / b + n \log \log b)$ is given by $b = \Theta(\log n)$.
- We now have an $\langle O(n \log \log \log n), O(1) \rangle$ solution for ranking!



Feedback Loops

- As you might expect, we can feed this solution back into itself to come up with a $\Theta(n \log \log \log n)$, $O(1)$ solution to ranking.
- More generally, let $\log^{(k)} n$ denote the logarithm function iterated k times.
- **Question:** Does this solution allow us to get a $\Theta(n \log^{(k)} n)$, $O(1)$ solution for all choices of k ?

Answer at

<https://cs166.stanford.edu/pollev>

$O(\log n)$ -bit
numbers

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

$O(b \lg \lg \lg b)$
Space

Counting Layers

- Our $\langle O(n \log^{(1)} n), O(1) \rangle$ solution to ranking uses a single array of integers to store prefix sums.

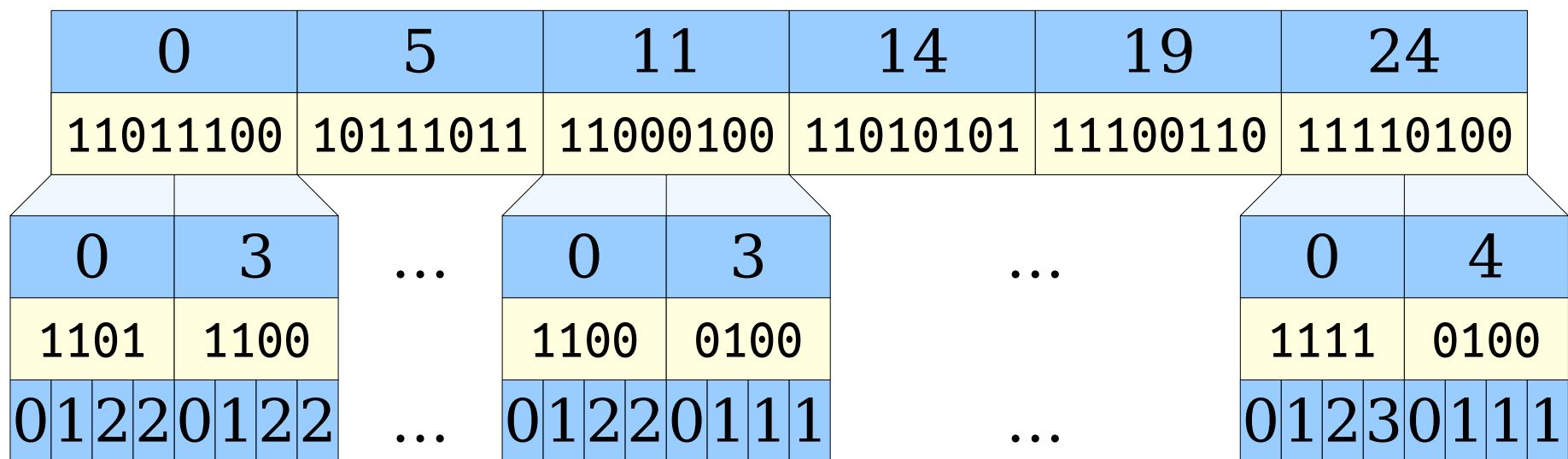
Counting Layers

- Our $\langle O(n \log^{(2)} n), O(1) \rangle$ solution to ranking uses two prefix arrays, one at the top level and one for the blocks.



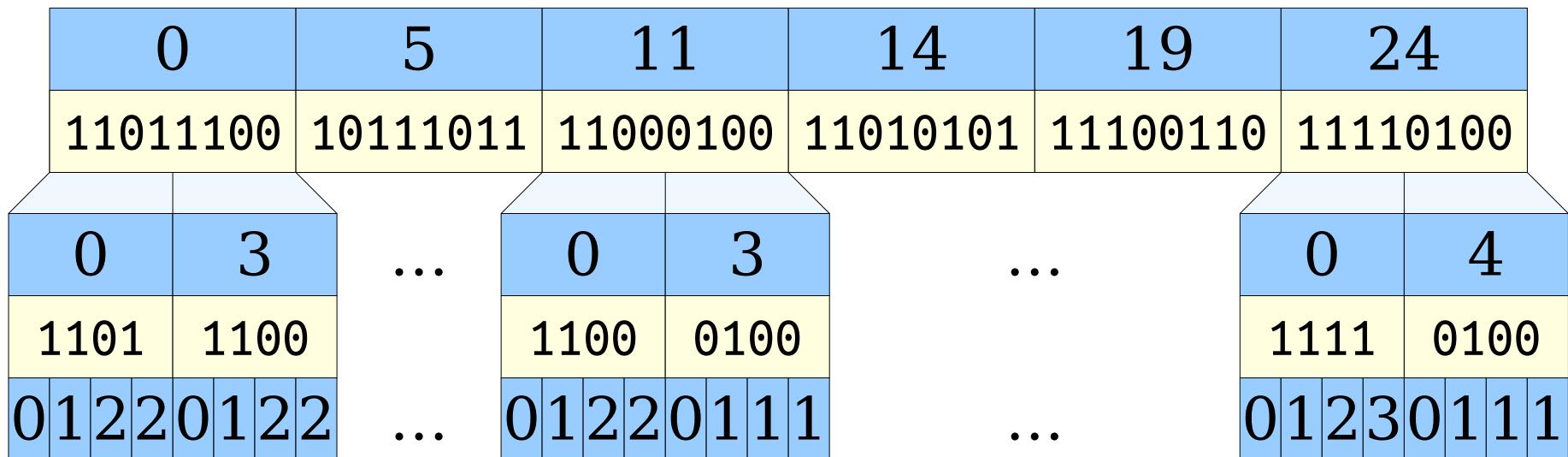
Counting Layers

- Our $\langle O(n \log^{(3)} n), O(1) \rangle$ solution to ranking uses three prefix arrays: one at the top level, one at the block level, and one for “miniblocks.”



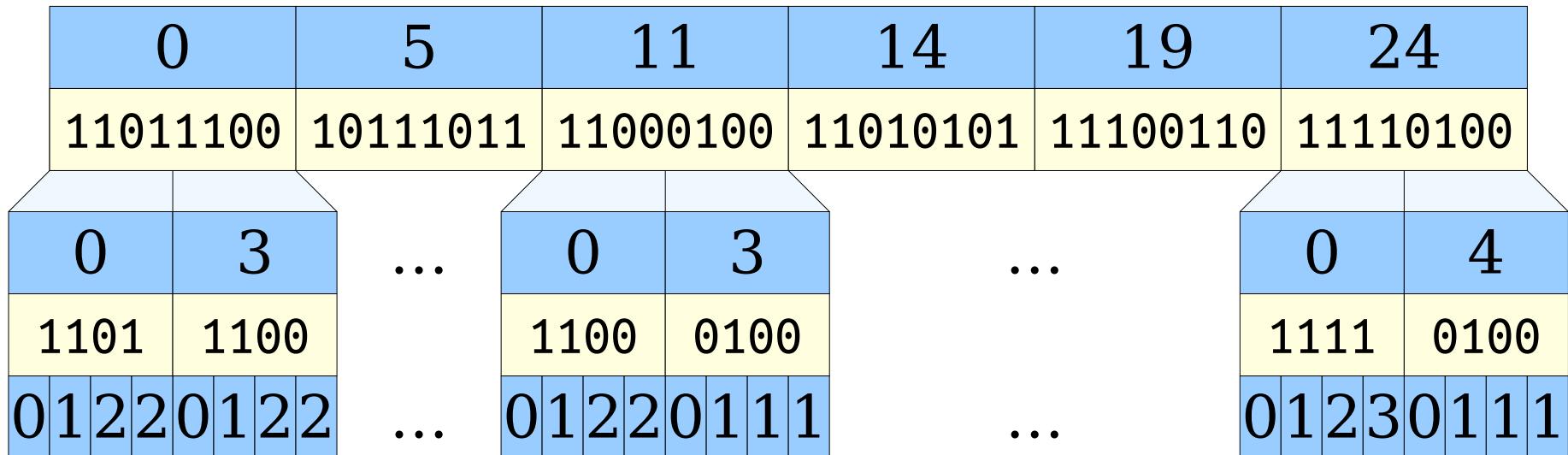
Counting Layers

- More generally, if we have k layers of arrays, we use $O(nk + n \log^{(k)} n)$ bits.
 - Each of the first $k - 1$ layers requires $O(n)$ bits. (*Why?*)
 - The last layer uses $O(n \log^{(k)} n)$ bits. (*Why?*)
- Our query time is $O(k)$, since we have k layers to navigate.



Counting Layers

- We now have a $\langle O(nk + n \log^{(k)} n), O(k) \rangle$ solution for ranking.
- If k is a fixed constant, this is a $\langle O(n \log^{(k)} n), O(1) \rangle$ solution to ranking.
- **Question:** What if we pick k in terms of n ?



Intuiting $O(nk + n \log^{(k)} n)$

- What's the impact of tuning k ?
 - If k is too large, then we have ***too many layers of recursion*** and the recursive prefix sums use too much space.
 - If k is too small, then we have ***too few layers of recursion*** and the final array of numbers will be too big.
- There should be an optimal choice of k that balances these constraints. What is it?

Iterated Logarithms

- **Intuition:** The log function is incredibly effective at shrinking down large quantities.
 - Number of protons in the known universe: $\approx 2^{240}$.
 - $\log^{(0)} 2^{240} = 1,766,847, [\dots \text{ 57 digits } \dots], 292,619,776$
 - $\log^{(1)} 2^{240} = 240$
 - $\log^{(2)} 2^{240} \approx 7.91$
 - $\log^{(3)} 2^{240} \approx 2.98$
 - $\log^{(4)} 2^{240} \approx 1.58$
- More generally, for any natural number n , there is some minimum k for which $\log^{(k)} n \leq 2$.
- The **iterated logarithm of n** , denoted **$\log^* n$** , is the smallest choice of k that makes $\log^{(k)} n \leq 2$.
- Question to ponder: what's the smallest n where $\log^* n = 10$?

Iterated Logarithms

- For any choice of k , we have a
$$\langle O(nk + n \log^{(k)} n), O(k) \rangle$$
solution to ranking.
- Pick $\mathbf{k = \log^* n}$. This gives us a
$$\langle O(n \log^* n), O(\log^* n) \rangle$$
solution to binary ranking.
- In practice, this is *essentially* a $\langle O(n), O(1) \rangle$ solution to ranking.
 - (If $n \leq 2^{64}$, then $\log^* n = 4$. So four layers of structure would always suffice.)

The Story So Far

- We have an (almost) linear-space solution to ranking.
- There's still more room for improvement.
 - Practically, we're still using $\approx 5n$ total bits.
 - Theoretically, we'd like to remove the $\log^* n$ factor.
- Can we do better?

	Bits Needed	Query Time
Prefix Sum Array	$O(n \log n)$	$O(1)$
Two-Level Prefix Sums	$O(n \log \log n)$	$O(1)$
Multilevel Prefix Sums	$O(n \log^* n)$	$O(\log^* n)$

Time-Out for Announcements!

Problem Set 1

- Problem Set 0 (Concept Refresher) was due today at 1:00PM.
 - Need more time? You can use up to two late days to extend the deadline by 24 or 48 hours.
- Problem Set 1 (**RMQ**) goes out today. It's due next Tuesday at 1:00PM.
 - You may work with a partner on this assignment if you'd like.
 - Play around with the RMQ structures from last week, and see what it's like to code them up!
- As always, ping us on EdStem or stop by office hours if you have questions!

Back to CS166!

An Alternative Approach

An Alternative Approach

- Our best approach so far involves the following idea:
 - Split the input array into smaller blocks.
 - Recursively build fast ranking structures per block.
- The recursion in that second step is where we get the $O(\log^* n)$ query time from.
- **Question:** Can we avoid having to run the recursion in the last step?

An Alternative Approach

- When we set out to split our input apart into blocks, we left the choice of block size b unspecified.
- Later, we found that $b = \Theta(\log n)$ was the optimal choice.
 - This means that our blocks are *tiny* compared to the size of our input array.
- **Key Intuition:** These blocks are so small that there can't be "too many" distinct blocks.
- **Question:** Where have you seen this idea before?

The Four Russians Strategy

- As an example, imagine that we pick our block size as $b = 3$.
- There are only eight possible blocks:

000 001 010 011 100 101 110 111

- We could therefore build a table keyed on a combination of a block and an index in into the block:

	000	001	010	011	100	101	110	111
Index 0	0	0	0	0	0	0	0	0
Index 1	0	0	0	0	1	1	1	1
Index 2	0	0	1	1	1	1	2	2

The Four Russians Strategy

- There are only 2^b possible blocks.
- There are $O(b)$ positions within a block.
- Each prefix sum within a block requires $O(\log b)$ bits to write out.
- Total space: $O(2^b \cdot b \cdot \log b)$.

	000	001	010	011	100	101	110	111
Index 0	0	0	0	0	0	0	0	0
Index 1	0	0	0	0	1	1	1	1
Index 2	0	0	1	1	1	1	2	2

The Four Russians Strategy

- Total space: $O(2^b \cdot b \cdot \log b)$.
- Plugging in $\mathbf{b = \frac{1}{2} \lg n}$ gives a space usage of
 - $= O(2^{\frac{1}{2} \lg n} \cdot \log n \cdot \log \log n)$
 - $= O(n^{\frac{1}{2}} \log n \log \log n)$
 - $= o(n^{\frac{2}{3}})$.
- This is *sublinear* space for sufficiently large n .

	000	001	010	011	100	101	110	111
Index 0	0	0	0	0	0	0	0	0
Index 1	0	0	0	0	1	1	1	1
Index 2	0	0	1	1	1	1	2	2

The Four Russians Strategy

- Split the input apart into blocks of size $\frac{1}{2} \lg n$.
- Compute the prefix sum to the start of each block.
 - This uses $O((n \log n) / \log n) = O(n)$ bits.
- Build a table of all possible rank queries on all possible blocks. This uses $o(n^{2/3})$ bits.
- Total space: **O(n)**.

0	2	5	6	8	10	13	13	14	16	18	20
110	111	001	011	101	111	000	100	110	101	101	110

	000	001	010	011	100	101	110	111
Index 0	0	0	0	0	0	0	0	0
Index 1	0	0	0	0	1	1	1	1
Index 2	0	0	1	1	1	1	2	2

The Four Russians Strategy

- To perform a query for the rank sum up to index k :
 - Compute $i = \lfloor k/b \rfloor$, the index block k falls in.
 - Use the bits of block i as an index into the secondary table, then look up row $k \bmod b$.
 - Add the Four Russians table number to the i th entry of the top-level array.
- Query time: **O(1)**.

$$\text{rank}(17) = 12$$

(block 5)

0	2	5	6	8	10	13	13	14	16	18	20
110	111	001	011	101	111	000	100	110	101	101	110

	000	001	010	011	100	101	110	111
Index 0	0	0	0	0	0	0	0	0
Index 1	0	0	0	0	1	1	1	1
Index 2	0	0	1	1	1	1	2	2

The Story So Far

- This new approach uses $O(n)$ bits and can support queries in time $O(1)$.
- It seems like there's no more room for improvement here - are we done?

	Bits Needed	Query Time
Prefix Sum Array	$O(n \log n)$	$O(1)$
Multilevel Prefix Sums	$O(n \log^* n)$	$O(\log^* n)$
Four Russians	$O(n)$	$O(1)$

The Story So Far

- Our Four Russians approach uses $\Theta(n)$ extra bits beyond the bits in the original array. The actual number is actually

$$2n + o(n)$$

because we need to store

- $n / (\frac{1}{2} \lg n) = 2n / \lg n$ indices in the top-level table,
- each index is $\lg (n + 1)$ bits long, and
- we need $o(n)$ bits for the precomputed tables.
- This is a marked improvement over our original approach, but it still means we need at least twice as many bits as in the original array.
- **Goal:** Reduce the space usage *even further*.

The Story So Far

- The two space-efficient solutions we've developed so far are based on different ideas.
 - Multilevel Prefix Sums: subdivide the array into blocks, then recursively subdivide those blocks even further.
 - Four Russians: Once we reach blocks of size $\frac{1}{2} \lg n$ or smaller, precompute all possible answers to all possible queries.
- What happens if we combine these strategies together?

	Bits Needed	Query Time
Multilevel Prefix Sums	$O(n \log^* n)$	$O(\log^* n)$
Four Russians	$O(n)$	$O(1)$

The Combined Approach

- We begin with an array of n bits. We ultimately need to reduce the array size to $\frac{1}{2} \lg n$ to use the Four Russians approach.
- If we immediately subdivide into blocks of that size, we get our $\langle O(n), O(1) \rangle$ solution.
- ***Idea:*** Introduce some intermediate level of subdivision between the original array and the blocks of size $\frac{1}{2} \lg n$.

The Combined Approach

- Subdivide the array into $\Theta(n / b)$ blocks of size b .
- Write prefix sums of $O(\log n)$ bits at the start of each block.
- Subdivide each block into $\Theta(b / \log n)$ miniblocks of size $\frac{1}{2} \lg n$.
- Write prefix sums of $O(\log b)$ bits at the start of each miniblock.
- Precompute a table of all rank queries on all miniblocks (not shown), using $o(n^{2/3})$ bits.

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

1101	0101
0	3

Miniblock size:
 $\frac{1}{2} \lg n$ bits

Block size:
 b bits

The Combined Approach

- To perform a query for the prefix sum at index k :
 - Compute $i = \lfloor k/b \rfloor$, the index of the block containing k . Write down the prefix sum at the start of block i in the top-level array.
 - Compute $j = \lfloor (k \bmod b) / (\frac{1}{2} \lg n) \rfloor$, the index of the miniblock within block i containing k . Write down the prefix sum at the start of miniblock i in the second-level array.
 - Look up $(k \bmod b) \bmod \frac{1}{2} \lg n$ in the precomputed table for the miniblock to get the prefix sum within the miniblock.
 - Add these values together.
- Total query time: **O(1)**.

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

1101	0101
0	3

Miniblock size:
 $\frac{1}{2} \lg n$ bits

Block size:
 b bits

The Combined Approach

- Space for top-level array: $O((n \log n) / b)$.
- Space for the miniblocks: $O((n \log b) / \log n)$
 - $O(n / \log n)$ total miniblocks.
 - $O(\log b)$ bits per miniblock for a prefix sum.
- Space for the Four Russians table: $o(n^{2/3})$.
- Total space: **$O((n \log n) / b + (n \log b) / \log n) + o(n^{2/3})$** .
- What's the optimal choice of b here?

0	5	11	14	19	24
11011100	10111011	11000100	11010101	11100110	11110100

1101	0101
0	3

Miniblock size:
 $\frac{1}{2} \lg n$ bits

Block size:
 b bits

Optimizing $O\left(\frac{n \log n}{b} + \frac{n \log b}{\log n}\right)$

- Start by taking the derivative:

$$\frac{d}{db} \left(\frac{n \log n}{b} + \frac{n \log b}{\log n} \right) = \frac{-n \log n}{b^2} + \frac{n}{b \log n}$$

- Setting equal to zero and solving:

$$\frac{-n \log n}{b^2} + \frac{n}{b \log n} = 0$$

$$-\log^2 n + b = 0$$

$$b = \log^2 n$$

- Asymptotically optimal space usage is when we pick $b = \Theta(\log^2 n)$.
- If we do that, our space usage is

$$O\left(\frac{n \log n}{b} + \frac{n \log b}{\log n}\right)$$

The Combined Approach

- We now have a solution that uses a *sublinear* number of auxiliary bits.
- The space usage for the original array, plus our structure, is $n + o(n)$. As n increases, we need proportionally fewer and fewer bits!

	Bits Needed	Query Time
Multilevel Prefix Sums	$O(n \log^* n)$	$O(\log^* n)$
Four Russians	$O(n)$	$O(1)$
Two-Level Four Russians (Jacobson's Structure)	$O\left(\frac{n \log \log n}{\log n}\right)$	$O(1)$

Succinct Data Structures

- A data structure is called ***succinct*** if it uses $B + o(B)$ bits, where B is the information-theoretic minimum number of bits needed to solve the problem.
- In the case of binary rank, we must use at least n bits of space.
 - We can recover the original bit array using rank queries, and an arbitrary n -element bit array can't be stored in fewer than n bits.
 - (Why can't we use fewer than n bits?)
- Our space usage for our rank structure is $n + o(n)$ and is thus succinct.

Further Work

- These ideas – plus some further refinements – work well in practice.
 - Check out the libraries `rank9`, `poppy`, etc. to see how these look in practice.
- Further work in Theoryland has produced $\langle O(n / \log^k n), O(k) \rangle$ structures for any constant k .
 - Many of the techniques employed here come from data compression – very cool!
- There's also work done into compressing bitvectors while allowing for fast access to individual elements, allowing for even greater space reductions.
 - Assuming the bitvector has some “nice” structure to it, we can sometimes encode it in space $o(n)$ as well!

Summary for Today

- When you drop to the level of counting individual bits, data structure design gets a lot more complex (and interesting)!
- Recursively subdividing larger structures into smaller pieces is a great way to reduce space usage.
- The Method of Four Russians is a fantastic way to handle arrays once they get sufficiently small.
- Using a fixed number of recursive reductions, then switching to a Four Russians speedup, is a common strategy for building sublinear-space data structures.

Next Time

- ***Succinct Select***
 - Computing the inverse of rank queries.
- ***Sparse/Dense Subdivisions***
 - Handling disparate cases nonuniformly.