

Succinct Data Structures
Part One

Motivation
● Some data sets are downright gigantic.

● The human genome uses 3 billion base pairs.
● Google gets billions of search queries a day.
● Census data for some countries runs to billions of

entries.
● Simply loading the data sets into memory – let

alone storing them in fancy data structures –
pushes up on system limits.

● Goal: Store our data using as few bits as
possible while still being able to answer
interesting questions about that data.

Outline for Today
● The Binary Rank Problem

● Prefix sums on bitvectors.
● Solving Binary Rank

● And learning about how to save bits along
the way.

● Jacobson’s Succinct Rank Structure
● A surprisingly space-efficient data structure

for binary ranking.

Binary Ranking

Binary Ranking
● The binary ranking problem is the following:

Given a list of n bits and an index i, return
the sum of all the bits up to position i in

the list.
● It’s basically the problem of computing prefix

sums in bitvectors.

1 1 0 1 1 1 1 0 0011 1 1 1 0 0 1 0 1

Binary Ranking
● Let’s imagine we want to be able to

answer rank queries in time O(1).
● We could do this by writing down the

prefix sums for all positions in an array,
then just looking up the answer in a table.

● Question: How much space does this use?

1 1 0 1 1 1 1 0 0011 1 1 1 0 0 1 0 1

7 8 9 9 10 11 12 13 13 130 2 2 3 41 5 5 5 6 6

Binary Ranking
● It sure looks like this uses Θ(n) space.
● But what do we mean by “space” here?

● Integers usually are represented by machine words.
● We assume each machine word has w bits in it (e.g. w = 32,

w = 64, etc.), for a constant w known to us.
● Space: Θ(nw) bits. This leaves a lot to be desired.

● On a 64-bit machine, this is a 64x blowup in memory!
● Can we do better?

1 1 0 1 1 1 1 0 0011 1 1 1 0 0 1 0 1

7 8 9 9 10 11 12 13 13 130 2 2 3 41 5 5 5 6 6

Counting Bits
● Let’s suppose we have an array of 1023 = 210 – 1 bits.
● The prefix sum at each point would be an integer between 0

and 1023, inclusive.
● We only need 10 bits to represent such a prefix sum.
● Idea: Allocate an array of 10n bits, interpreted as an array of n

10-bit numbers.
● This reduces our space usage down to 10n. It’s better than

before, but still 10× bigger than the original array.

1 1 1 1 0 0011 1 1 …

0000000000 0000000001 0000000010 11011100101101110010…

… 1012 bits …

Counting Bits
● If we maintain an array of prefix sums for an array of n bits,

each individual prefix sum is a value between 0 and n, inclusive.
● There are n+1 possibilities for what those numbers can be, so

each integer requires lg (n+1) bits.
● We could use fewer bits by using shorter integers for earlier values,

but that won’t necessarily asymptotically improve space usage.
● Our solution therefore uses O(n log n) bits, but allows for rank

queries in time O(1).
● Can we do better?

1 1 1 1 0 0011 1 1 …

0000000000 0000000001 0000000010 11011100101101110010…

… 1012 bits …

Counting Bits
● We’ll say that a solution to binary ranking is a

⟨s(n), q(n)⟩ solution if
● its space usage is s(n), and
● queries take time q(n).

● We currently have a ⟨O(n log n), O(1)⟩ solution to
binary ranking.

● Question: Can we do better?

Prefix Sum Array

Bits Needed Query Time

O(n log n) O(1)

Counting Bits
● We are currently using O(n log n) bits of storage

space: O(n) numbers, each of which is O(log n)
bits long.

● To improve on this, we could either
● reduce how many numbers we’re storing, or
● reduce how many bits each number uses.

● Question: What might that look like?

Prefix Sum Array

Bits Needed Query Time

O(n log n) O(1)

rank(36) = ?rank(36) = 22

1101110010111011110001001101010111100110111101111100

Improving Space Usage
● Split the input array of bits into blocks of b bits each.

Then, only store prefix sums at the start of each block.
● To compute the prefix sum at index k:

● Compute i = ⌊ᵏ/b⌋, the index of the block containing k.
● Write down the precomputed prefix sum for block i.
● Run a linear scan to compute the sum of the first k mod b

bits of block i.
● Add these numbers together.

11011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

(block 4)

19
11100110

Improving Space Usage
● Total space usage: O((n log n) / b).

● We’re storing Θ(n / b) numbers.
● Each number needs O(log n) bits.

● Query time: O(b).
● We may have to scan Θ(b) bits.

● There is no “optimal” choice of b here.
● Increasing b decreases memory usage but increases query time.
● Decreasing b decreases query time but increases memory usage.

● We’ll therefore leave b as a free parameter that whoever is using
our data structure can tune.

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

O(log n)-bit
numbers

The Story So Far
● Earlier, we said there were two strategies we

could use to reduce space:
● Store fewer numbers.
● Use fewer bits per number.

● Our blocking approach hits this first point.
What about the second?

Prefix Sum Array

Bits Needed Query Time

O(n log n) O(1)

Partial Prefix Sum
Array O(b)O (n log n

b)

Combining Things Together
● The “slow” step in our query is the linear scan across

the bits of a block. Can we speed things up?
● That linear scan is essentially a rank query on an

array of b bits.
● Idea: Rather than use a linear scan there, use our

existing ⟨Θ(n log n), O(1)⟩ solution at a per-block level.

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

Combining Things Together
● Instead of one single top-level array, maintain two parallel arrays.

● The top-level array stores the bit sum up until the start of each block.
● The second-level array can be thought of as an “array of arrays,” with one

array per block, holding answers to rank queries purely within the block.
● There isn’t room in the slides to draw out the full second array;

hopefully you can infer from the picture what the remaining entries
would be.

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

…0 1 2 22 2 2 3 3 0 1 2 22 2 2 3 3… ……0 1 1 22 3 4 4 5 0 1 2 23 3 3 4 5… …

rank(36) = ?rank(36) = 22

Combining Things Together
● To answer a rank query at index k:

● Compute i = ⌊k/b⌋, the index of the block where the query ends.
● Look up the ith entry of the top-level table.
● Look up the (k mod b)th entry of the second-level table’s

section for block i.
● Return the sum of those numbers.

● Query cost: O(1).

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

…0 1 2 22 2 2 3 3 0 1 2 22 2 2 3 3… ……0 1 1 22 3 4 4 5 0 1 2 23 3 3 4 5… …

(block 4)

19

3

Combining Things Together
● How much memory does this use?

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

Answer at

https://cs166.stanford.edu/pollev

…0 1 2 22 2 2 3 3 0 1 2 22 2 2 3 3… ……0 1 1 22 3 4 4 5 0 1 2 23 3 3 4 5… …

https://cs166.stanford.edu/pollev

Intuiting
● As b increases:

● We use less space storing partial prefix sums at the
start of each block, since there are fewer blocks.

● Each block has more bits, so the sums within each
block require more bits.

● As b decreases:
● We use more space storing partial prefix sums at the

start of each block, since there are more blocks.
● Each block has fewer bits, so the sums within each

block requires fewer bits.
● Question: What choice of b minimizes the above

quantity?

O (n log n
b +n log b)

Optimizing
● Start by taking the derivative:

● Setting equal to zero and solving:

● Asymptotically optimal choice is b = Θ(log n), giving
space usage O(n log log n).

O (n log n
b +n log b)

d
db (n log n

b +n log b) = −n log n
b2 + n

b

−n log n
b2 + n

b = 0

− log n+b = 0

b = log n

The Story So Far
● Our new approach is more space-efficient than our

original approach, and works nicely in practice.
● lg lg 264 = 6.

● Question: Can we do better?

Prefix Sum Array

Bits Needed Query Time

O(n log n) O(1)

Partial Prefix Sum
Array O(b)O (n log n

b)
Two-Level Prefix Sums O(n log log n) O(1)

O(b log b)

Bits
O(b log b)

Bits
O(b log b)

Bits
O(b log b)

Bits
O(b log b)

Bits
O(b log b)

Bits

Feedback Loops
● Think back to how we arrived at our Θ(n log log n)-space

solution.
● We split our array apart into blocks of size b.
● We stored the prefix sums at the start of each block.
● We used our Θ(n log n)-space solution for each block.

● More generally, for that last step, we could have used any
rank structure we wanted.

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

Block-Level
Rank

Block-Level
Rank

Block-Level
Rank

Block-Level
Rank

Block-Level
Rank

Block-Level
Rank

Feedback Loops
● Last time, we used our ⟨O(n log n), O(1)⟩ structure

per block. It was the best approach we had available.
● But we now have a ⟨O(n log log n), O(1)⟩ structure

available, which uses asymptotically fewer bits!
● What happens if we use that one within each block?

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

Block-Level
Rank

Block-Level
Rank

Block-Level
Rank

Block-Level
Rank

Block-Level
Rank

Block-Level
Rank

O(b lg lg b)
Space

O(b lg lg b)
Space

O(b lg lg b)
Space

O(b lg lg b)
Space

O(b lg lg b)
Space

O(b lg lg b)
Space

11011100 10111011 11000100 11010101 11100110 11110100

O(b lg lg b)
Space

O(b lg lg b)
Space

O(b lg lg b)
Space

O(b lg lg b)
Space

O(b lg lg b)
Space

O(b lg lg b)
Space

Feedback Loops
● Split the input apart into blocks of size b.
● Store the prefix sum at the start of each block.
● Use our ⟨O(n log log n), O(1)⟩ solution within each

block.
● Compute the overall rank of an index k by

combining these answers together.

0 5 11 14 19 24

Feedback Loops
● The actual data structure consists of three arrays:

● A top-level array of prefix sums before each b-bit block.
● A second-level array of prefix sums before each (log b)-bit “miniblock.”
● A third-level array with prefix sums before each bit of each

“miniblock.”
● We group these tables into three arrays, one per level, to avoid

storing pointers.

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

0 3
1101 1100

0 3
1100 0100

0 4
1111 0100

… …

01220122 01110122 01110123… …

Feedback Loops
● How much memory does this structure

use, and what’s the query cost?

Answer at

https://cs166.stanford.edu/pollev

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

0 3
1101 1100

0 3
1100 0100

0 4
1111 0100

… …

01220122 01110122 01110123… …

https://cs166.stanford.edu/pollev

Feedback Loops
● Claim: The choice of b that asymptotically

minimizes Θ((n log n) / b + n log log b) is
given by b = Θ(log n).

● We now have an ⟨O(n log log log n), O(1)⟩
solution for ranking!

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

0 3
1101 1100

0 3
1100 0100

0 4
1111 0100

… …

01220122 01110122 01110123… …

Block-Level

Rank
Block-Level

Rank
Block-Level

Rank
Block-Level

Rank
Block-Level

Rank
Block-Level

Rank
O(b lg lg lg b)

Space
O(b lg lg lg b)

Space
O(b lg lg lg b)

Space
O(b lg lg lg b)

Space
O(b lg lg lg b)

Space
O(b lg lg lg b)

Space

Feedback Loops
● As you might expect, we can feed this solution back into itself to come

up with a ⟨Θ(n log log log log n), O(1)⟩ solution to ranking.
● More generally, let log(k) n denote the logarithm function iterated k

times.
● Question: Does this solution allow us to get a ⟨Θ(n log(k) n), O(1)⟩

solution for all choices of k?

11011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

O(log n)-bit
numbers

Answer at
https://cs166.stanford.edu/pollev

https://cs166.stanford.edu/pollev

Counting Layers
● Our ⟨O(n log(1) n), O(1)⟩ solution to

ranking uses a single array of integers to
store prefix sums.

1101110010111011110001001101010111100110111101111100

0 1 2 2 3 29292928274 5 2625…

Counting Layers
● Our ⟨O(n log(2) n), O(1)⟩ solution to

ranking uses two prefix arrays, one at
the top level and one for the blocks.

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

…0 1 2 22 2 2 3 3 0 1 2 22 2 2 3 3… ……0 1 1 22 3 4 4 5 0 1 2 23 3 3 4 5… …

Counting Layers
● Our ⟨O(n log(3) n), O(1)⟩ solution to

ranking uses three prefix arrays: one at
the top level, one at the block level, and
one for “miniblocks.”

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

0 3
1101 1100

0 3
1100 0100

0 4
1111 0100

… …

01220122 01110122 01110123… …

Counting Layers
● More generally, if we have k layers of arrays, we use

O(nk + n log(k) n) bits.
● Each of the first k – 1 layers requires O(n) bits. (Why?)
● The last layer uses O(n log(k) n) bits. (Why?)

● Our query time is O(k), since we have k layers to navigate.

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

0 3
1101 1100

0 3
1100 0100

0 4
1111 0100

… …

01220122 01110122 01110123… …

Counting Layers
● We now have a ⟨O(nk + n log(k) n), O(k)⟩ solution for

ranking.
● If k is a fixed constant, this is a ⟨O(n log(k) n), O(1)⟩

solution to ranking.
● Question: What if we pick k in terms of n?

110111001011101111000100110101011110011011110111110011011100 10111011 11000100 11010101 11100110 11110100

0 5 11 14 19 24

0 3
1101 1100

0 3
1100 0100

0 4
1111 0100

… …

01220122 01110122 01110123… …

Intuiting O(nk + n log(k) n)
● What’s the impact of tuning k?

● If k is too large, then we have too many
layers of recursion and the recursive prefix
sums use too much space.

● If k is too small, then we have too few layers
of recursion and the final array of numbers
will be too big.

● There should be an optimal choice of k that
balances these constraints. What is it?

Iterated Logarithms
● Intuition: The log function is incredibly effective at

shrinking down large quantities.
● Number of protons in the known universe: ≈2240.
● log(0) 2240 = 1,766,847,[… 57 digits …],292,619,776
● log(1) 2240 = 240
● log(2) 2240 ≈ 7.91
● log(3) 2240 ≈ 2.98
● log(4) 2240 ≈ 1.58

● More generally, for any natural number n, there is some
minimum k for which log(k) n ≤ 2.

● The iterated logarithm of n, denoted log* n, is the
smallest choice of k that makes log(k) n ≤ 2.

● Question to ponder: what’s the smallest n where
log* n = 10?

Iterated Logarithms
● For any choice of k, we have a

⟨O(nk + n log(k) n), O(k)⟩
solution to ranking.

● Pick k = log* n. This gives us a
⟨O(n log* n), O(log* n)⟩

solution to binary ranking.
● In practice, this is essentially a ⟨O(n), O(1)⟩

solution to ranking.
● (If n ≤ 264, then log* n = 4. So four layers of structure

would always suffice.)

The Story So Far
● We have an (almost) linear-space solution to ranking.
● There’s still more room for improvement.

● Practically, we’re still using ≈5n total bits.
● Theoretically, we’d like to remove the log* n factor.

● Can we do better?

Prefix Sum Array

Bits Needed Query Time

O(n log n) O(1)

Two-Level Prefix Sums O(n log log n) O(1)

Multilevel Prefix Sums O(n log* n) O(log* n)

Time-Out for Announcements!

Problem Set 1
● Problem Set 0 (Concept Refresher) was due today

at 1:00PM.
● Need more time? You can use up to two late days to

extend the deadline by 24 or 48 hours.
● Problem Set 1 (RMQ) goes out today. It’s due next

Tuesday at 1:00PM.
● You may work with a partner on this assignment if

you’d like.
● Play around with the RMQ structures from last week,

and see what it’s like to code them up!
● As always, ping us on EdStem or stop by office

hours if you have questions!

Back to CS166!

An Alternative Approach

An Alternative Approach
● Our best approach so far involves the

following idea:
● Split the input array into smaller blocks.
● Recursively build fast ranking structures per

block.
● The recursion in that second step is where

we get the O(log* n) query time from.
● Question: Can we avoid having to run the

recursion in the last step?

An Alternative Approach
● When we set out to split our input apart into

blocks, we left the choice of block size b
unspecified.

● Later, we found that b = Θ(log n) was the optimal
choice.
● This means that our blocks are tiny compared to the

size of our input array.
● Key Intuition: These blocks are so small that

there can’t be “too many” distinct blocks.
● Question: Where have you seen this idea before?

The Four Russians Strategy
● As an example, imagine that we pick our block size as

b = 3.
● There are only eight possible blocks:

000 001 010 011 100 101 110 111
● We could therefore build a table keyed on a

combination of a block and an index in into the block:

000 001 010 011 100 101 110 111
Index 0
Index 1
Index 2

0
0
0

0
0
0

0
0
1

0
0
1

0
1
1

0
1
1

0
1
2

0
1
2

The Four Russians Strategy
● There are only 2b possible blocks.
● There are O(b) positions within a block.
● Each prefix sum within a block requires

O(log b) bits to write out.
● Total space: O(2b · b · log b).

000 001 010 011 100 101 110 111
Index 0
Index 1
Index 2

0
0
0

0
0
0

0
0
1

0
0
1

0
1
1

0
1
1

0
1
2

0
1
2

The Four Russians Strategy
● Total space: O(2b · b · log b).
● Plugging in b = ½ lg n gives a space usage of

 = O(2½ lg n · log n · log log n)
 = O(n½ log n log log n)
 = o(n⅔).

● This is sublinear space for sufficiently large n.

000 001 010 011 100 101 110 111
Index 0
Index 1
Index 2

0
0
0

0
0
0

0
0
1

0
0
1

0
1
1

0
1
1

0
1
2

0
1
2

The Four Russians Strategy
● Split the input apart into blocks of size ½ lg n.
● Compute the prefix sum to the start of each block.

● This uses O((n log n) / log n) = O(n) bits.
● Build a table of all possible rank queries on all possible

blocks. This uses o(n⅔) bits.
● Total space: O(n).

110111001011101111000100110101011110011011110110 111 001 011 101 111 000 100 110 101 101 110

130 2 5 6 8 10 13 14 16 18 20

000 001 010 011 100 101 110 111
Index 0
Index 1
Index 2

0
0
0

0
0
0

0
0
1

0
0
1

0
1
1

0
1
1

0
1
2

0
1
2

rank(17) = ?rank(17) = 12

The Four Russians Strategy
● To perform a query for the rank sum up to index k:

● Compute i = ⌊k/b⌋, the index block k falls in.
● Use the bits of block i as an index into the secondary table, then

look up row k mod b.
● Add the Four Russians table number to the ith entry of the top-

level array.
● Query time: O(1).

110111001011101111000100110101011110011011110110 111 001 011 101 111 000 100 110 101 101 110

130 2 5 6 8 10 13 14 16 18 20

000 001 010 011 100 101 110 111
Index 0
Index 1
Index 2

0
0
0

0
0
0

0
0
1

0
0
1

0
1
1

0
1
1

0
1
2

0
1
2

10
(block 5)

2

The Story So Far
● This new approach uses O(n) bits and can

support queries in time O(1).
● It seems like there’s no more room for

improvement here – are we done?

Prefix Sum Array

Bits Needed Query Time

O(n log n) O(1)

Multilevel Prefix Sums O(n log* n) O(log* n)

Four Russians O(n) O(1)

The Story So Far
● Our Four Russians approach uses Θ(n) extra bits beyond

the bits in the original array. The actual number is actually
2n + o(n)

because we need to store
● n / (½ lg n) = 2n / lg n indices in the top-level table,
● each index is lg (n + 1) bits long, and
● we need o(n) bits for the precomputed tables.

● This is a marked improvement over our original approach,
but it still means we need at least twice as many bits as in
the original array.

● Goal: Reduce the space usage even further.

The Story So Far
● The two space-efficient solutions we’ve developed so far

are based on different ideas.
● Multilevel Prefix Sums: subdivide the array into blocks, then

recursively subdivide those blocks even further.
● Four Russians: Once we reach blocks of size ½ lg n or smaller,

precompute all possible answers to all possible queries.
● What happens if we combine these strategies together?

Bits Needed Query Time

Multilevel Prefix Sums O(n log* n) O(log* n)

Four Russians O(n) O(1)

The Combined Approach
● We begin with an array of n bits. We

ultimately need to reduce the array size to
½ lg n to use the Four Russians approach.

● If we immediately subdivide into blocks of
that size, we get our ⟨O(n), O(1)⟩ solution.

● Idea: Introduce some intermediate level of
subdivision between the original array and
the blocks of size ½ lg n.

The Combined Approach
● Subdivide the array into Θ(n / b) blocks of size b.
● Write prefix sums of O(log n) bits at the start of each block.
● Subdivide each block into Θ(b / log n) miniblocks of size ½ lg n.
● Write prefix sums of O(log b) bits at the start of each

miniblock.
● Precompute a table of all rank queries on all miniblocks (not

shown), using o(n⅔) bits.

11011100101110111100010011010101111001101111011111001110011011011100 10111011 11000100 11010101 11110100

0 3

0 5 11 14 19 24

1101 0101
Block size:

b bits
Miniblock size:

½ lg n bits

The Combined Approach
● To perform a query for the prefix sum at index k:

● Compute i = ⌊k/b⌋, the index of the block containing k. Write down the prefix
sum at the start of block i in the top-level array.

● Compute j = ⌊(k mod b) / (½ lg n)⌋, the index of the miniblock within block i
containing k. Write down the prefix sum at the start of miniblock i in the
second-level array.

● Look up (k mod b) mod ½ lg n in the precomputed table for the miniblock to
get the prefix sum within the miniblock.

● Add these values together.
● Total query time: O(1).

11011100101110111100010011010101111001101111011111001110011011011100 10111011 11000100 11010101 11110100

0 3

0 5 11 14 19 24

1101 0101
Block size:

b bits
Miniblock size:

½ lg n bits

The Combined Approach
● Space for top-level array: O((n log n) / b).
● Space for the miniblocks: O((n log b) / log n)

● O(n / log n) total miniblocks.
● O(log b) bits per miniblock for a prefix sum.

● Space for the Four Russians table: o(n⅔).
● Total space: O((n log n) / b + (n log b) / log n) + o(n2/3).
● What’s the optimal choice of b here?

11011100101110111100010011010101111001101111011111001110011011011100 10111011 11000100 11010101 11110100

0 3

0 5 11 14 19 24

1101 0101
Block size:

b bits
Miniblock size:

½ lg n bits

Optimizing
● Start by taking the derivative:

● Setting equal to zero and solving:

● Asymptotically optimal space usage is when we pick b = Θ(log2 n).
● If we do that, our space usage is

d
db (n log n

b + n log b
log n) = −n log n

b2 + n
b log n

−n log n
b2 + n

b log n
= 0

− log2 n+b = 0

b = log2 n

O (n log n
b + n log b

log n) = O (n
log n + n log log2 n

log n) = O (n log log n
log n)

O (n log n
b + n log b

log n)

The Combined Approach
● We now have a solution that uses a sublinear number of

auxiliary bits.
● The space usage for the original array, plus our

structure, is n + o(n). As n increases, we need
proportionally fewer and fewer bits!

Bits Needed Query Time

Multilevel Prefix Sums O(n log* n) O(log* n)

Four Russians O(n) O(1)

Two-Level Four Russians
(Jacobson’s Structure) O(1)O (n log log n

log n)

Succinct Data Structures
● A data structure is called succinct if it uses B + o(B)

bits, where B is the information-theoretic minimum
number of bits needed to solve the problem.

● In the case of binary rank, we must use at least n bits
of space.
● We can recover the original bit array using rank queries,

and an arbitrary n-element bit array can’t be stored in
fewer than n bits.

● (Why can’t we use fewer than n bits?)
● Our space usage for our rank structure is n + o(n) and

is thus succinct.

Further Work
● These ideas – plus some further refinements – work

well in practice.
● Check out the libraries rank9, poppy, etc. to see how these

look in practice.
● Further work in Theoryland has produced

⟨O(n / logk n), O(k)⟩ structures for any constant k.
● Many of the techniques employed here come from data

compression – very cool!
● There’s also work done into compressing bitvectors

while allowing for fast access to individual elements,
allowing for even greater space reductions.
● Assuming the bitvector has some “nice” structure to it, we

can sometimes encode it in space o(n) as well!

Summary for Today
● When you drop to the level of counting individual

bits, data structure design gets a lot more complex
(and interesting)!

● Recursively subdividing larger structures into
smaller pieces is a great way to reduce space
usage.

● The Method of Four Russians is a fantastic way to
handle arrays once they get sufficiently small.

● Using a fixed number of recursive reductions, then
switching to a Four Russians speedup, is a common
strategy for building sublinear-space data
structures.

Next Time
● Succinct Select

● Computing the inverse of rank queries.
● Sparse/Dense Subdivisions

● Handling disparate cases nonuniformly.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

